Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Nature ; 602(7897): 487-495, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585830

ABSTRACT

The emergence of SARS-CoV-2 variants of concern suggests viral adaptation to enhance human-to-human transmission1,2. Although much effort has focused on the characterization of changes in the spike protein in variants of concern, mutations outside of spike are likely to contribute to adaptation. Here, using unbiased abundance proteomics, phosphoproteomics, RNA sequencing and viral replication assays, we show that isolates of the Alpha (B.1.1.7) variant3 suppress innate immune responses in airway epithelial cells more effectively than first-wave isolates. We found that the Alpha variant has markedly increased subgenomic RNA and protein levels of the nucleocapsid protein (N), Orf9b and Orf6-all known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein that is required for activation of the RNA-sensing adaptor MAVS. Moreover, the activity of Orf9b and its association with TOM70 was regulated by phosphorylation. We propose that more effective innate immune suppression, through enhanced expression of specific viral antagonist proteins, increases the likelihood of successful transmission of the Alpha variant, and may increase in vivo replication and duration of infection4. The importance of mutations outside the spike coding region in the adaptation of SARS-CoV-2 to humans is underscored by the observation that similar mutations exist in the N and Orf9b regulatory regions of the Delta and Omicron variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , Evolution, Molecular , Immune Evasion , Immunity, Innate/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/transmission , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Immunity, Innate/genetics , Interferons/immunology , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Proteomics , RNA, Viral/genetics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/growth & development
3.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1387963

ABSTRACT

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Subject(s)
COVID-19/prevention & control , Computational Biology/methods , Databases, Genetic , Genomics/methods , Molecular Sequence Annotation/methods , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Epidemics , Humans , Internet , Mice , Pseudogenes/genetics , RNA, Long Noncoding/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Transcription, Genetic/genetics
4.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-1386333

ABSTRACT

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Genome, Viral , Nucleocapsid/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Nucleocapsid/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , SARS-CoV-2/genetics , Vero Cells , COVID-19 Drug Treatment
5.
Nutrients ; 13(6)2021 May 21.
Article in English | MEDLINE | ID: covidwho-1244085

ABSTRACT

CONTEXT: Calcifediol has been proposed as a potential treatment for COVID-19 patients. OBJECTIVE: To compare the administration or not of oral calcifediol on mortality risk of patients hospitalized because of COVID-19. DESIGN: Retrospective, multicenter, open, non-randomized cohort study. SETTINGS: Hospitalized care. PATIENTS: Patients with laboratory-confirmed COVID-19 between 5 February and 5 May 2020 in five hospitals in the South of Spain. INTERVENTION: Patients received calcifediol (25-hydroxyvitamin D3) treatment (0.266 mg/capsule, 2 capsules on entry and then one capsule on day 3, 7, 14, 21, and 28) or not. MAIN OUTCOME MEASURE: In-hospital mortality during the first 30 days after admission. RESULTS: A total of 537 patients were hospitalized with COVID-19 (317 males (59%), median age, 70 years), and 79 (14.7%) received calcifediol treatment. Overall, in-hospital mortality during the first 30 days was 17.5%. The OR of death for patients receiving calcifediol (mortality rate of 5%) was 0.22 (95% CI, 0.08 to 0.61) compared to patients not receiving such treatment (mortality rate of 20%; p < 0.01). Patients who received calcifediol after admission were more likely than those not receiving treatment to have comorbidity and a lower rate of CURB-65 score for pneumonia severity ≥ 3 (one point for each of confusion, urea > 7 mmol/L, respiratory rate ≥ 30/min, systolic blood pressure < 90 mm Hg or diastolic blood pressure ≤ 60 mm Hg, and age ≥ 65 years), acute respiratory distress syndrome (moderate or severe), c-reactive protein, chronic kidney disease, and blood urea nitrogen. In a multivariable logistic regression model, adjusting for confounders, there were significant differences in mortality for patients receiving calcifediol compared with patients not receiving it (OR = 0.16 (95% CI 0.03 to 0.80). CONCLUSION: Among patients hospitalized with COVID-19, treatment with calcifediol, compared with those not receiving calcifediol, was significantly associated with lower in-hospital mortality during the first 30 days. The observational design and sample size may limit the interpretation of these findings.


Subject(s)
COVID-19 Drug Treatment , Calcifediol/administration & dosage , Hospital Mortality , SARS-CoV-2/metabolism , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , Female , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
6.
Nat Commun ; 12(1): 2642, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1225505

ABSTRACT

Despite its clinical importance, the SARS-CoV-2 gene set remains unresolved, hindering dissection of COVID-19 biology. We use comparative genomics to provide a high-confidence protein-coding gene set, characterize evolutionary constraint, and prioritize functional mutations. We select 44 Sarbecovirus genomes at ideally-suited evolutionary distances, and quantify protein-coding evolutionary signatures and overlapping constraint. We find strong protein-coding signatures for ORFs 3a, 6, 7a, 7b, 8, 9b, and a novel alternate-frame gene, ORF3c, whereas ORFs 2b, 3d/3d-2, 3b, 9c, and 10 lack protein-coding signatures or convincing experimental evidence of protein-coding function. Furthermore, we show no other conserved protein-coding genes remain to be discovered. Mutation analysis suggests ORF8 contributes to within-individual fitness but not person-to-person transmission. Cross-strain and within-strain evolutionary pressures agree, except for fewer-than-expected within-strain mutations in nsp3 and S1, and more-than-expected in nucleocapsid, which shows a cluster of mutations in a predicted B-cell epitope, suggesting immune-avoidance selection. Evolutionary histories of residues disrupted by spike-protein substitutions D614G, N501Y, E484K, and K417N/T provide clues about their biology, and we catalog likely-functional co-inherited mutations. Previously reported RNA-modification sites show no enrichment for conservation. Here we report a high-confidence gene set and evolutionary-history annotations providing valuable resources and insights on SARS-CoV-2 biology, mutations, and evolution.


Subject(s)
COVID-19/virology , Genome, Viral/genetics , Mutation , SARS-CoV-2/genetics , Betacoronavirus/classification , Betacoronavirus/genetics , Codon , Evolution, Molecular , Genes, Viral , Genetic Fitness , Genetic Variation , Open Reading Frames , Phylogeny , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics
7.
Virology ; 558: 145-151, 2021 06.
Article in English | MEDLINE | ID: covidwho-1152685

ABSTRACT

At least six small alternative-frame open reading frames (ORFs) overlapping well-characterized SARS-CoV-2 genes have been hypothesized to encode accessory proteins. Researchers have used different names for the same ORF or the same name for different ORFs, resulting in erroneous homological and functional inferences. We propose standard names for these ORFs and their shorter isoforms, developed in consultation with the Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. We recommend calling the 39 codon Spike-overlapping ORF ORF2b; the 41, 57, and 22 codon ORF3a-overlapping ORFs ORF3c, ORF3d, and ORF3b; the 33 codon ORF3d isoform ORF3d-2; and the 97 and 73 codon Nucleocapsid-overlapping ORFs ORF9b and ORF9c. Finally, we document conflicting usage of the name ORF3b in 32 studies, and consequent erroneous inferences, stressing the importance of reserving identical names for homologs. We recommend that authors referring to these ORFs provide lengths and coordinates to minimize ambiguity caused by prior usage of alternative names.


Subject(s)
Open Reading Frames , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Terminology as Topic , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/genetics
8.
Res Sq ; 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-836467

ABSTRACT

Despite its overwhelming clinical importance, the SARS-CoV-2 gene set remains unresolved, hindering dissection of COVID-19 biology. Here, we use comparative genomics to provide a high-confidence protein-coding gene set, characterize protein-level and nucleotide-level evolutionary constraint, and prioritize functional mutations from the ongoing COVID-19 pandemic. We select 44 complete Sarbecovirus genomes at evolutionary distances ideally-suited for protein-coding and non-coding element identification, create whole-genome alignments, and quantify protein-coding evolutionary signatures and overlapping constraint. We find strong protein-coding signatures for all named genes and for 3a, 6, 7a, 7b, 8, 9b, and also ORF3c, a novel alternate-frame gene. By contrast, ORF10, and overlapping-ORFs 9c, 3b, and 3d lack protein-coding signatures or convincing experimental evidence and are not protein-coding. Furthermore, we show no other protein-coding genes remain to be discovered. Cross-strain and within-strain evolutionary pressures largely agree at the gene, amino-acid, and nucleotide levels, with some notable exceptions, including fewer-than-expected mutations in nsp3 and Spike subunit S1, and more-than-expected mutations in Nucleocapsid. The latter also shows a cluster of amino-acid-changing variants in otherwise-conserved residues in a predicted B-cell epitope, which may indicate positive selection for immune avoidance. Several Spike-protein mutations, including D614G, which has been associated with increased transmission, disrupt otherwise-perfectly-conserved amino acids, and could be novel adaptations to human hosts. The resulting high-confidence gene set and evolutionary-history annotations provide valuable resources and insights on COVID-19 biology, mutations, and evolution.

SELECTION OF CITATIONS
SEARCH DETAIL